

Low Noise, High g, Low Power, Low Drift 3-Axis Accelerometer

PRELIMINARY

ADXL356/ADXL357

FEATURES

Ultralow noise density: 80µg/√Hz Resonant frequency of 5.4kHz

Offset temperature coefficient of <0.75mg/°C (max) with minimal hysteresis

Hermetic package offers excellent long-term stability Low power:

200 μA in measurement mode (digital) 175 μA in measurement mode (analog) 30 μA in standby mode

Digital SPI/I²C interfaces

20-Bit ADC

Data interpolation routine for synchronous sampling Programmable high- and low-pass filters

Analog interface

Bandwidth set with external capacitor

Electromechanical self-test

Integrated temperature sensor

Supply voltage options:

2.25 V to 3.6 V with internal regulators

Or 1.8 V ± 10%

Operating Temperature Range: -40°C to 125°C 6 mm × 6 mm × 2.1 mm 14-pin hermetic, 0.26grams ceramic package

APPLICATIONS

IMU/AHRS Stabilization systems Tilt sensing Robotics Condition Monitoring

GENERAL DESCRIPTION

The ADXL356 (analog output) ADXL357 (digital output) are low noise density, high frequency, low 0-g offset drift, low power, 3-axis accelerometers with selectable measurement ranges up to $\pm 40~g$, helping to prevent saturation in a high shock and vibration environment. The ADXL356/357 offers industry-leading noise density over a wide frequency band, with a resonance of 5.4kHz

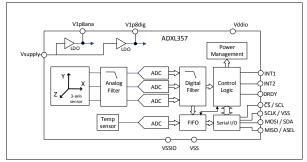


Figure 1: ADXL357 Functional Block Diagram.

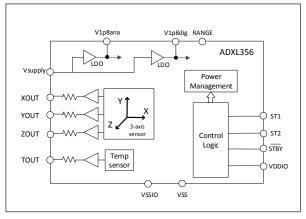


Figure 2: ADXL356 Functional Block Diagram.

Low Noise, High g, Low Power, Low Drift 3-Axis Accelerometer

PRELIMINARY

ADXL356/ADXL357

TABLE OF CONTENTS

Features	1
Applications	1
General Description	1
Specifications	4
Absolute Maximum Ratings	10
ESD caution	10
Acceleration Sensitive AxEs	10
Pin Configuration and Function Descriptions	11
Typical Performance Charts	13
ADXL 356 (Analog output)	13
ADXL 357 (DIGITAL output)	14
Application Information	15
Theory of Operation	15
Digital Output	15
Analog Output	15
Power Sequencing	16
Power Supply Description	16
Over-Range Protection	16
Self Test	16
Serial Communication	20
SPI Protocol	20
I2C Protocol	22
Reading Acceleration or Temperature Data from the	
Interface	
FIFO	
Interrupts	
External Sync and Interpolation	
ADXL357 Register Map	
Register Definitions	
Analog Devices ID Register	
Analog Devices MEMS ID Register	
Device ID Register	
Product Revision ID Register	30
Status Register	30

FIFO Entries Registers	31
Temperature Data Registers	31
X-Axis Data Registers	31
Y-Axis Data Registers	32
Z-Axis Data Registers	32
FIFO Access Register	33
X-Axis Offset Trim Registers	33
Y-Axis Offset Trim Registers	33
Z-Axis Offset Trim Registers	34
Activity Enable Register	34
Activity Threshold Registers	34
Activity Count Register	35
Filter Settings Register	35
FIFO Samples Register	35
Interrupt Pin Function Map Register	36
Data Synchronization	36
I2C Speed, Interrupt Polarity and Range Register	r36
Power Control Register	37
Self-Test Register	37
Reset Register	37
Recommended Soldering Profile	38
PCB Footprint Pattern	39
Outline Dimensions	40

Ordering Guide40

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. See the last page for disclaimers.

Low Noise, High g, Low Power, Low Drift 3-Axis Accelerometer

PRELIMINARY

ADXL356/ADXL357

SPECIFICATIONS

 $T_A = 25$ °C, $V_{SUPPLY} = 3.3$ V, acceleration = 0 g, Output Data Rate = 125Hz.

Table 1: ADXL357 (DIGITAL OUTPUT)

Parameter	Test Conditions	Min ²	Typ¹	Max	Unit
SENSOR INPUT	Each axis				
Output Full Scale Range (FSR)	User selectable		±10		g
			±20		
			±40		
Nonlinearity ¹	±10 <i>g</i>		0.1		%
Cross-Axis Sensitivity			1		%
SENSITIVITY	Each axis				
Sensitivity at Xout, Yout, Zout	±10 g	47104	51200	55296	LSB/g
	±20 g	23552	25600	27648	LSB/g
	±40 <i>g</i>	11776	12800	13824	LSB/g
Scale Factor at X _{OUT} , Y _{OUT} , Z _{OUT}	±10 g		40		μ <i>g/</i> LSB
	±20 g		39		μ <i>g/</i> LSB
	±40 <i>g</i>		78		μ <i>g/</i> LSB
Sensitivity Change Due to Temperature	-40°C to 105°C		±0.01		%/°C
Sensitivity Change Due to Temperature	-40°C to 125°C		±TBD		%/°C
Repeatability Error! Bookmark not defined.			±TBD		%
o g OFFSET	Each axis, ±10 g				
o g Output for X _{OUT} , Y _{OUT} , Z _{OUT}		-150	±25	+150	m <i>g</i>
o g Offset vs. Temperature (XYZ axes) $^{\scriptscriptstyle 2}$	-40°C to 105°C	-0.75	±0.02	0.75	m <i>g</i> /°C
o g Offset vs. Temperature (XYZ axes) $^{\scriptscriptstyle 2}$	-40°C to 125°C	-TBD	±TBD	TBD	m <i>g</i> /°C
Repeatability ³			±25		m <i>g</i>
Vibration Rectification	±40 g range, offset shift under 10g rms 50Hz to 2kHz random vibration, 4kHz ODR		TBD		g
NOISE	±10 g				
X, Y, Z Axes			80		μ <i>g</i> /√Hz
Velocity Random Walk			TBD		μm/s/√hr
OUTPUT DATA RATE AND BANDWIDTH	User Selectable				
Bandwidth					
Low Pass Filter -3 dB Frequency			11000		Hz
High Pass Filter -3 dB Frequency			DC 10		Hz

¹ The typical specifications shown are for at least 68% of the population of parts and are based on the worst case of mean ±1 of, except for sensitivity, which represents the

Rev PrD

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. See the last page for disclaimers.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106,

U.S.A.

Tel: 781.329.4700 www.analog.com

Fax: 781.461.3113 ©2009 Analog Devices, Inc. All rights reserved.

² Min/Max is determined by characterization and represents 99.97% of the population.

 $_3$ Includes shifts due to HTOL (TA = 150°C, Vs = 3.6V, 1000hrs) and Temperature Cycling (-55°C to 125°C, 1000 cycles).

Parameter	Test Conditions	Min ²	Typ¹	Max	Unit
Output Data Rate to Bandwidth Ratio			4		
SELF-TEST					
Output Change in X-Axis			0.3		g
Output Change in Y-Axis			0.3		g
Output Change in Z-Axis			1.5		g
POWER SUPPLY					
Operating Voltage Range (V _{SUPPLY})		2.25	2.5	3.6	V
I/O Voltage Range (V _{DDI/O})		V1p8dig	2.5	3.6	V
Operating Voltage with Internal LDO bypassed	V _{SUPPLY} = oV	1.62	1.8	1.98	V
Supply Current			200		μΑ
Standby Mode Current			30		μΑ
Turn-On Time	Standby to measurement mode (to within 1mg of final value, 1og range)		<10		ms
	Power-off to standby		<10		ms
TEMPERATURE SENSOR					
Output at 25°C			1852		LSB
Long term stability ³			TBD		°C
Scale Factor			-9.05		LSB/°C
TEMPERATURE					
Operating Temperature Range		-40		+125	°C

 $T_A = 25$ °C, $V_{SUPPLY} = 3.3$ V, acceleration = 0g.

Table 2: ADXL356 (ANALOG OUTPUT)

Parameter	Test Conditions	Min	Typ¹	Max	Unit
SENSOR INPUT	Each axis				
Output Full Scale Range (FSR)	ADXL ₃₅ 6B		±10, ±20		g
	ADXL ₃₅ 6C		±10, ±40		g
Nonlinearity ¹	±10 g		0.1		%
Cross-Axis Sensitivity			1		%
SENSITIVITY	Ratiometric to V1p8ana				
Sensitivity at X _{OUT} , Y _{OUT} , Z _{OUT}	±10 g	73.6	80	86.4	mV/g
	±20 g	36.8	40	43.2	mV/g
	±40 g	18.4	20	21.6	mV/g
Sensitivity Change Due to Temperature	-40°C to 105°C		±0.01		%/°C
Sensitivity Change Due to Temperature	-40°C to 125°C		±TBD		%/°C
Repeatability ³			0.125		%
o g OFFSET	Each axis, ±2 g				
о g Output for Х _{оит} , Y _{оит} , Z _{оит}	Referred to V1p8ana/2	-150	±25	+150	m <i>g</i>
o g Offset vs. Temperature (XYZ axes) Error! Bookmark not defined.	-40°C to 105°C	-0.75	±0.1	0.75	m <i>g</i> /°C
o g Offset vs. Temperature (XYZ axes) ^{Error!} Bookmark not defined.	-40°C to 125°C	-TBD	±TBD	TBD	m <i>g</i> /°C
Repeatability Error! Bookmark not defined.			±5		m <i>g</i>
Vibration Rectification	±40 g range, offset shift under 10g rms 50Hz to 2kHz random vibration, 4kHz ODR		TBD		g
NOISE	±10 g				
X, Y, Z Axes			80		μg/√Hz
Velocity Random Walk			TBD		μm/s/√hi
BANDWIDTH					
LPF ±3 dB Frequency	Set by external capacitors		11000		Hz
SELF-TEST					
Output Change in X-Axis			0.3		g
Output Change in Y-Axis			0.3		g
Output Change in Z-Axis			1.5		g
POWER SUPPLY				6	
Operating Voltage Range (V _{SUPPLY})		2.25	2.5	3.6	V
I/O Voltage Range (V _{DDI/O})		V1p8dig	2.5	3.6	V
Operating Voltage with Internal LDO bypassed	V _{SUPPLY} = 0V	1.62	1.8	1.98	
Supply Current			175		μΑ
Turn-On Time	Standby to measurement mode (to within		<10		ms

¹ The typical specifications shown are for at least 68% of the population of parts and are based on the worst case of mean ±1 σ, except for sensitivity, which represents the target value.

² Min/Max is determined by characterization and represents 99.97% of the population.

 $^{^3}$ Includes shifts due to HTOL (T_A = 150°C, V_S = 3.6V, 1000hrs) and Temperature Cycling (-55°C to 125°C, 1000 cycles).

Parameter	Test Conditions	Min	Typ¹	Max	Unit
	1mg of final value,				
	10g range)				
	Power-off to		<10		ms
	standby				
OUTPUT AMPLIFIER					
Swing	No load	0.03		V1p8ana – o.o3	٧
Output Resistance			32		kΩ
TEMPERATURE SENSOR					
Output at 25°C			892.2		mV
Scale Factor			3		mV/C
Long term stability ³			TBD		°C
Scale Factor			3.0		mV/°C
TEMPERATURE					
Operating Temperature Range		-40		+125	°C

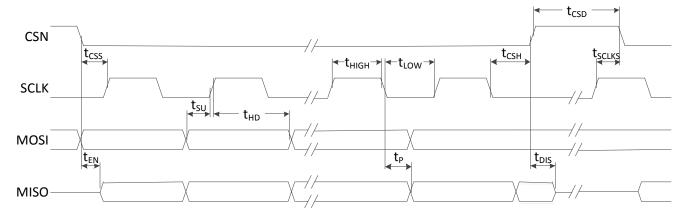


Figure 3 SPI Interface Timing Parameters

Table 3 ADXL357 SPI DIGITAL INTERFACE CHARACTERISTICS

Parameter	Description	Min	Typ¹	Max	Unit
INPUT DC LEVELS					
V_{IL}	Low level input voltage			0.3*V _{DDIO}	V
V_{IH}	High level input voltage	o.7*V _{DDIO}			V
I _{IL}	Low level input current, V _{IN} =oV	-0.1			μΑ
I _{IH}	High level input current, V _{IN} =V _{DDIO}			0.1	μΑ
OUTPUT DC LEVELS					
V_{OL}	Low level output voltage, IoL=IoL,Min			$0.2*V_{DDIO}$	V
V _{OH}	High level output voltage, IoL=IOH,Max	o.8*V _{DDIO}			V
I _{OL}	Low level output current, V _{OL} =V _{OL,Max}	-10mA			mA
I _{OH}	High level output current, V _{OL} =V _{OH,Min}			4mA	mA
INPUT AC Parameters					
SCLK Frequency		О		10	MHz
t _{HIGH}	SCLK high time	40			nsec
t _{LOW} SCLK low time		40			nsec
t _{CSS}	CSN set-up time 20				nsec
t _{CSH}	CSN hold time	20			nsec

ADXL356/ADXL357

Parameter	Description	Min	Typ¹	Max	Unit
t _{CSD}	CSN disable time	40			nsec
t _{SCLKS}	Rising SCLK setup time	20			nsec
t_{SU}	MOSI setup time	20		nsec	
t _{HD}	MOSI hold time	20			nsec
OUTPUT AC Parameters					
t_P	Propagation delay, C _{LOAD} =30pF			30	nsec
t _{EN}	Enable MISO time 30		nsec		
t _{DIS}	Disable MISO time	20 n		nsec	

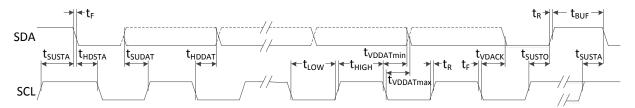


Figure 4 I2C Interface Timing Parameters

Table 4 I2C DIGITAL INTERFACE CHARACTERISTICS

		I2C_HS=o			I2C_HS=1			
Parameter	Description	Min	Typ¹	Max	Min	Typ²	Max	Unit
INPUT DC LEVELS								
V_{IL}	Low level input voltage			$0.3*V_{DDIO}$			$0.3*V_{DDIO}$	V
V_{IH}	High level input voltage	o.7*V _{DDIO}			0.7*V _{DDIO}			V
V_{HYS}	Hysteresis of Schmitt trigger inputs	0.05*V _{DDIO}			0.1*V _{DDIO}			μΑ
I _{IL}	Input current, 0.1x V _{DDIO} <v<sub>IN<0.9 xV_{DDIO}</v<sub>	-10		10				μА
OUTPUT DC LEVELS								
V_{OL_1}	Low level output voltage, I _{OL} =3mA, V _{DD} >2V			0.4				V
V_{OL_2}	Low level output voltage,			$0.2*V_{DDIO}$				V
	I _{OL} =3mA, V _{DD} <=2V							
I _{OL}	Low level output current,	20mA						mA
	V _{OL} =0.4V Low level output current, V _{OL} =0.6V	6mA						mA
INPUT AC Parameters								
SCLK Frequency		0		1	0		3.4	MHz
t _{HIGH}	SCLK high time	260			60			nsec
t_{LOW}	SCLK low time	500			160			nsec
t _{SUSTA}	Start set-up time	260			160			nsec
t _{HDSTA}	Start hold time	260			160			nsec
t_{SUDAT}	Data set-up time	50			10			nsec
t_{HDDAT}	Data hold time	0			0			nsec

ADXL356/ADXL357

			I2C_HS=0			I2C_HS=	1	
Parameter	Description	Min	Typ¹	Max	Min	Typ²	Max	Unit
t _{SUSTO}	Stop setup time	260			160			nsec
t_{BUF}	Bus free time	500			-			nsec
t_{RCL}	SCL input rise time			120			160	nsec
t_{FCL}	SCL input fall time			120			80	nsec
t_{RDA}	SDA input rise time			120			160	nsec
t_{FDA}	SDA input fall time			120			160	nsec
t_SP	Width of spikes to be supressed			50			10	nsec
OUTPUT AC Parameters								
t _{VDDAT}	Data propagation delay, C _{LOAD} =550pF?	97		450	27		135	nsec
tvdack	ACK propagation delay, C _{LOAD} =550pF?			450			-	nsec
t_{F}	Output fall time	20x(V _{DD} /5.5)		120			TBD	nsec

ABSOLUTE MAXIMUM RATINGS

Table 5.

Tubic 5.	
Parameter	Rating
Acceleration (Any Axis, Unpowered, 0.5	TBD
ms)	
Acceleration (Any Axis, Powered, o.5 ms)	TBD
V _{SUPPLY} , V _{DDIO}	3.6 V
All other pins	TBD
Output Short-Circuit Duration	TBD
(Any Pin to Common)	
Operating Temperature Range	-40°C to +125°C
Storage Temperature	-40°C to +125°C -65°C to +150°C

Stresses above those listed under the Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification (Table 1, Table 2) is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

ACCELERATION SENSITIVE AXES

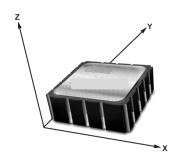


Figure 5. Axes of Acceleration Sensitivity (Corresponding Output Voltage Increases When Accelerated Along the Sensitive Axis)

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

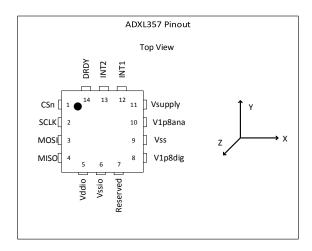


Figure 6. ADXL357 Pin Configuration (top view)

Table 6: ADXL357 Pin Function Descriptions

Pin No.	Pin Name	Description
1	CSn/SCL	SPI: Chip Select
		I2C: Serial Communications Clock
2	SCLK/Vssio	SPI: Serial Communications Clock
		I ₂ C: Connect to Vssio
3	MOSI/SDA	SPI: Master Output Slave Input
		I2C: Serial Data
4	MISO/ASEL	SPI: Master Input Slave Output
		I2C: Alternate I2C Address Select
5	Vddio	Digital Interface Supply Voltage
6	Vssio	Digital Ground
7	Reserved	This pin can be connected to ground or left open
8	V1p8dig	Internal Logic supply. Needs bypass cap. Must be driven if Vsupply is connected to Vss.
9	Vss	Analog ground
10	V1p8ana	Analog supply. Needs bypass cap. Must be driven if Vsupply is connected to Vss.
11	Vsupply	2.25 - 3.6V
		For Vdd = 2.25-3.6V, V1p8dig, V1p8ana are regulator outputs
		For Vdd = oV, V1p8dig, V1p8ana are 1.62-1.98V supply inputs
12	INT1	Interrupt Pin
13	INT ₂	Interrupt Pin
14	DRDY	Interrupt Pin

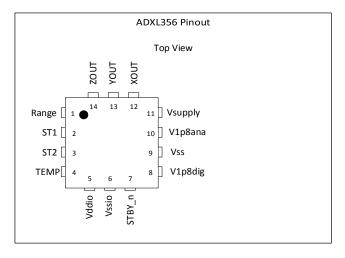


Figure 7. ADXL356 Pin Configuration (top view)

Table 7: ADXL356 Pin Function Descriptions

Pin No.	Pin Name	Description
1	Range	Range Selection Pin
		Set to ground to select ±2g range
		Set to Vddio to select $\pm 4g$ or $\pm 8g$ range (model dependent. See ordering guide)
2	ST ₁	Self-Test Pin
3	ST ₂	Self-Test Pin
4	Tout	Temperature Sensor Output
5	Vddio	Digital Interface Supply Voltage
6	Vssio	Digital Ground.
7	STBY_n	Select standby or measurement mode
		Set to ground to enter standby mode
		Set to Vddio to enter measurement mode
8	V1p8dig	Internal Logic supply. Needs bypass cap. Must be driven if Vsupply is
		connected to Vss.
9	Vss	Analog Ground
10	V1p8ana	Analog supply. Needs bypass cap. Must be driven if Vsupply is connected to Vss.
11	Vsupply	2.25 - 3.6V
		For Vsupply = 2.25-3.6V, V1p8dig, V1p8ana are regulator outputs.
		For Vsupply = oV, V1p8dig, V1p8ana are 1.62-1.98V supply inputs.
12	Xout	X-axis output
13	Yout	Y-axis output
14	Zout	Z-axis output

TYPICAL PERFORMANCE CHARTS

ADXL 356 (ANALOG OUTPUT)

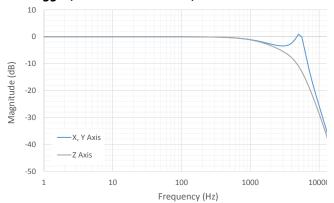


Figure 8ADXL356 frequency response

ADXL 357 (DIGITAL OUTPUT)

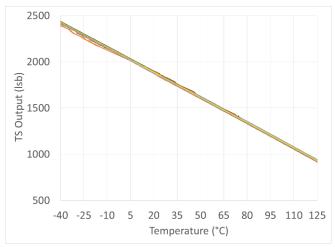


Figure 9 Temperature sensor output vs temperature (N=15)

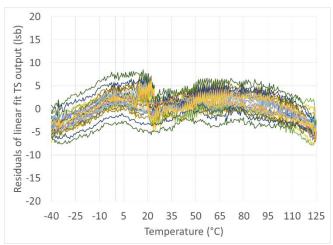


Figure 10 Residuals of linear fit to temperature sensor output vs temperature (N=15)

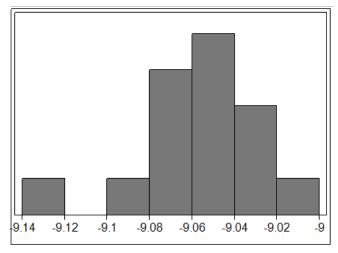


Figure 11 Temperature sensor scale factor in LSB/°C (N=15)

Low Noise, High g, Low Power, Low Drift 3-Axis Accelerometer

PRELIMINARY

ADXL356/ADXL357

APPLICATION INFORMATION

THEORY OF OPERATION

The ADXL356 is a complete 3-axis ultra-low noise and ultra-stable offset accelerometer with outputs ratiometric to the analog 1.8V supply. The ADXL357 adds three high resolution ADCs which use the analog 1.8V supply as a reference to provide digital outputs insensitive to supply voltage. The ADXL356B is pinselectable for ± 10 g or ± 20 g full scale, and the ADXL356C is pin-selectable for ± 10 g or ± 40 g full scale. The ADXL357 is programmable for ± 10 g, ± 20 g or ± 40 g full scale. The ADXL357 offers both SPI and I2C communications ports.

The surface-micromachined sensing elements are fully differential, comprising lateral XY-axis sensors and vertical teeter-totter Z-axis sensors. The XY sensors and the Z sensors go through separate signal paths, which have been designed to minimize offset drift and noise. The signal path is fully differential, except for a differential to single-ended conversion at the analog outputs.

The analog accelerometer outputs of the ADXL356 are ratiometric to V1p8ana, so careful attention must be taken to digitize them correctly. The temperature sensor output is not ratiometric. All analog outputs include an internal $32k\Omega$ resistor which can be used with a user-supplied external capacitor to set the bandwidth of the anti-alias filter.

The ADXL357 includes appropriate anti-alias filters before the ADC. User selectable output data rates and filter corners are provided. The temperature sensor is digitized with a 12-bit SAR converter.

DIGITAL OUTPUT

The ADXL357 application circuit is shown in Figure 12 with the recommended bypass capacitors. The communications interface is either SPI or I2C. See Serial Communication section for further details.

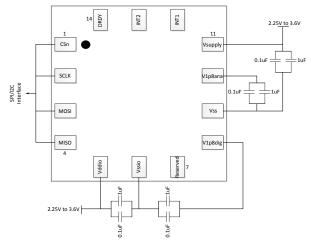


Figure 12. ADXL357 Application Circuit

The ADXL357 includes an internal configurable bandpass filter. Both the high- and low-pass poles of the filter are adjustable as shown in the Register Definition section under Filter Settings register. At power-up, the default condition for the filters is HPF = DC and LPF = $1000 \, \text{Hz}$.

ANALOG OUTPUT

The ADXL356 application circuit is shown in Figure 13. The analog outputs (XOUT, YOUT and ZOUT) are ratiometric to the internal regulator voltage (V1p8ana) and need to be read carefully in order to achieve the product's inherent noise performance. The zero-*g* bias output is nominally equal to V1p8ana / 2. The recommended option is to use ADXL356 with a ratiometric ADC (e.g. Analog Devices AD7682) with V1p8ana providing the voltage reference. This configuration would result in self-cancellation of errors due to minor supply variations.

The ADXL356 outputs also include 32 $k\Omega$ resistance in series which can be used in conjunction with external capacitors to implement low-pass filtering for antialiasing and noise reduction. The anti-alias filter cutoff frequency should be significantly higher than the desired signal bandwidth. If the anti-alias filter corner is too low, then ratiometricity may be degraded where the signal attenuation is different than the reference attenuation.

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. See the last page for disclaimers.

Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 ©2009 Analog Devices, Inc. All rights reserved.

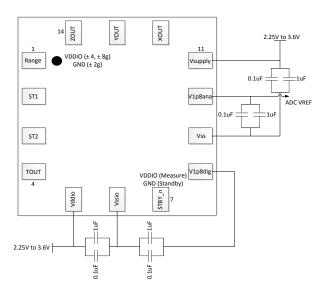


Figure 13. ADXL356 Application Circuit

POWER SEQUENCING

TBD

POWER SUPPLY DESCRIPTION

The ADXL356/ADXL357 has four different power supply domains. The internal analog and digital circuitry operates at 1.8V nominal.

Vsupply: 2.25V-3.6V, input to two low-dropout regulators which generate nominal 1.8V outputs for V1p8ana and V1p8dig.

V1p8ana: All sensor and signal processing circuitry operates in this domain. Offset and sensitivity of the XL354 analog output part are ratiometric to this supply voltage. External ADCs should use V1p8ana as the reference voltage. The ADXL357 digital output part includes A/D converters which are ratiometric to V1p8ana, thereby rendering offset and sensitivity insensitive to the value of V1p8ana. V1p8ana may be the output of an internal regulator, or it may be provided externally.

V1p8dig: This is the supply voltage for the internal logic circuitry. A separate LDO regulator is provided to decouple digital supply noise from the analog signal path. V1p8dig may be the output of an internal regulator, or it may be provided externally.

Vddio: Logic 'high' levels are determined by the value of Vddio. On the ADXL356 analog part, Vddio sets the logic high level for the Self-Test pins ST1 and ST2, as well as the STBY_n pin. On the ADXL357 digital part, Vddio sets the logic high level for communications

interface ports, as well as the interrupt and DRDY outputs.

The LDO regulators are operational when Vsupply is between 2.25V and 3.6V. V1p8ana and V1p8dig are the regulator outputs in this mode. Alternatively, when Vsupply is tied to Vss, V1p8ana and V1p8dig are supply voltage inputs, with a range of 1.62V-1.98V.

OVER-RANGE PROTECTION

In order to avoid electrostatic capture of the proofmass when the accelerometer is subjected to input acceleration beyond its full-scale range, all of the sensor drive clocks are turned off. In the $\pm 10g$ range setting, the over-range protection is activated for input signals beyond $\pm 40g$ ($\pm 25\%$), and for the $\pm 20g$ / $\pm 40g$ ranges the threshold corresponds to $\pm 80g$ ($\pm 25\%$).

SELF TEST

The ADXL356 and ADXL357 incorporate a self-test feature that effectively tests their mechanical and electronic systems simultaneously. In ADXL356, the self-test mode can be invoked by driving the ST1 pin to V_{DDIO} . Then driving the ST2 pin to V_{DDIO} applies an electrostatic force to the mechanical sensor and induces a change in output in response to the force. The self-test delta (or response) is the difference in output voltages between when ST2 is high and ST2 is low, both when ST1 is asserted. After the self-test measurement is complete, bringing both pins low will resume normal operation.

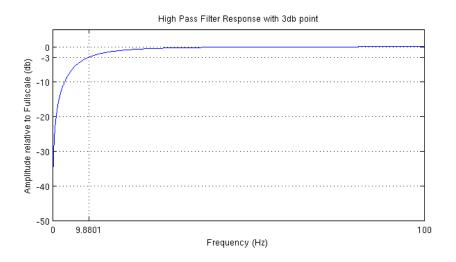
The self-test operation is similar in ADXL357 except ST1 and ST2 can be accessed through the SELF TEST (0x2E) register.

The self-test feature is designed to reject externally applied acceleration and only respond to the self-test force. This allows for an accurate measurement of self-test even in the presence of external mechanical noise.

FILTER

TBD

Table 9. Digital Filter Group Delay


		Dela	ıy		Atten.				
	SDM	ODR			@ODR/4				
ODR	cycles	cycles	Theory	msec	(db)				
4000	161	2.52	2.50	0.63	-3.44				
2000	257	2.00	2.00	1.00	-2.21				
1000	455	1.78	1.75	1.78	-1.92				
500	836	1.63	1.63	3.26	-1.83				
250	1605	1.57	1.56	6.27	-1.83				
125	3160	1.54	1.53	12.34	-1.83				
63	6190	1.51	1.52	24.18	-1.83				
31	12184	1.49	1.51	47.59	-1.83				
16	24640	1.50	1.50	96.25	-1.83				
8	48532	1.48	1.50	189.58	-1.83				
4	98383	1.50	1.50	384.31	-1.83				
With Interpol	ator								
64xODR									
256000	225	3.51661	3.50	0.88	-6.18				
128000	386	3.0126	3.00	1.51	-4.93				
64000	705	2.752	2.75	2.75	-4.66				
32000	1349	2.63459	2.63	5.27	-4.58				
16000	2639	2.57732	2.56	10.31	-4.55				
8000	5217	2.54725	2.53	20.38	-4.55				
4000	10373	2.53257	2.52	40.52	-4.55				
2000	20681	2.52452	2.51	80.78	-4.55				
1000	41295	2.52045	2.50	161.31	-4.55				
500	82556	2.5194	2.50	322.48	-4.55				
250	164963	2.51714	2.50	644.39	-4.55				

Low Noise, High g, Low Power, Low Drift 3-Axis Accelerometer

PRELIMINARY

ADXL356/ADXL357

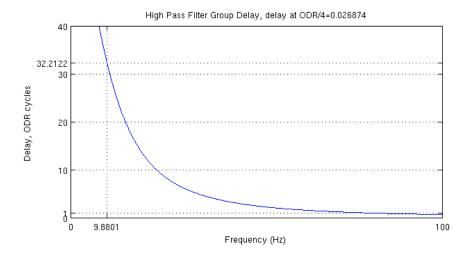


Figure 14 Simulated frequency response of high pass filter with 10Hz cut-off frequency

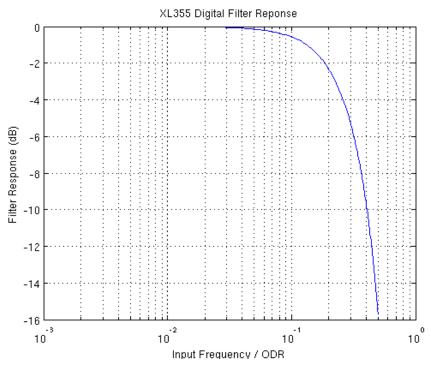


Figure 15 Simulated frequency response of low pass CIC filter with 1kHz corner frequency

Low Noise, High g, Low Power, Low Drift 3-Axis Accelerometer

PRELIMINARY

ADXL356/ADXL357

SERIAL COMMUNICATION

The four wire serial interface is designed to communicate in either the SPI or I2C protocol. It will affectively auto-detect the format being used, requiring no configuration control to select the format.

SPI PROTOCOL

Wire the ADXL357 for SPI communication as shown in the connection diagram in Figure 16. The SPI protocol is summarized in Figure 17. The timing scheme follows clock polarity (CPOL) = 0 and clock phase (CPHA) = 0. The SPI clock speed can range from 100 kHz to 10 MHz.

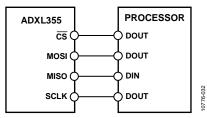
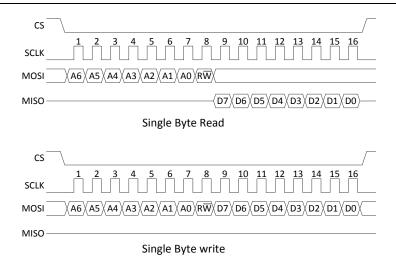



Figure 16. 4-Wire SPI Connection

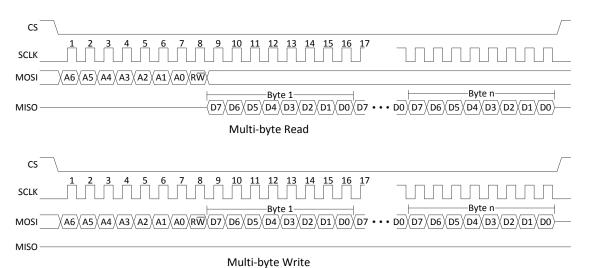


Figure 17: SPI Timing Diagram

I2C PROTOCOL

The I2C protocol is summarized Figure 18. The I2C interface can be used on most buses operating in I2C "Standard mode" (100kHz), "Fast mode" (400kHz), "Fast mode plus" (1MHz), and "High-speed mode" (3.4MHz). The ADXL357 I2C device ID is as follows: ASEL (pin) = 0, device ID = 7'h1D ASEL (pin) = 1, device ID = 7'h53

READING ACCELERATION OR TEMPERATURE DATA FROM THE INTERFACE

Acceleration data is left justified and with a register address order of most significant data to least significant data. This allows the user to use multi-byte transfers and to take only as much data as he is interested in, either 8 bits, 16 bits, or 20 bits plus marker. Temperature data is 12-bits unsigned, right-justified. The data in XDATA, YDATA, ZDATA, is always the most recent available. It is not guaranteed that XDATA, YDATA, and ZDATA will form a "set" corresponding to one sample point in time. This data set continuity is instead controlled by the routine used to retrieve the data from the device. If data transfers are initiated when DATA_RDY goes high and completed in a time approximately equal to 1/0DR, then the XDATA, YDATA, ZDATA will apply to the same dataset.

For multi-byte read or write transactions through either serial interface the internal register address will auto-increment. When the top of the register address range, 0x3FF, is reached the auto-increment will stop and not wrap back to the 0x00 address.

The address auto-increment function is disabled when the FIFO address is used. This is so that data can be read continuously from the FIFO as a multi-byte transaction. In cases where the starting address of a multi-byte transaction is less than the FIFO address, the address will auto-increment until the FIFO address is reached and then it will stop at the FIFO address.

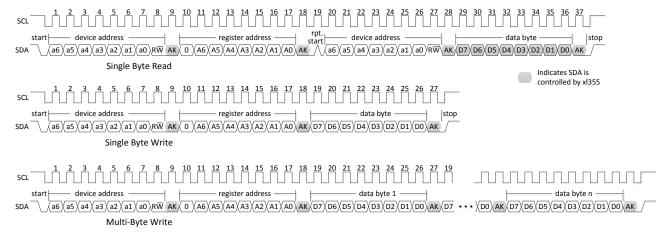


Figure 18. I2C Timing Diagram

FIFO

FIFO operates in a stream mode, that is, when the FIFO overruns new data over-writes the oldest data in the FIFO. A read from the FIFO address guarantees that the three bytes associated with the acceleration measurement on an axis all pertain to the same measurement. It is ensured that the FIFO never overruns and data is always taken out in sets (multiples of 3 data points).

There are 96 21-bit locations in the FIFO. Each location contains 20-bits of data and a marker bit for X-axis data. A single-byte read from the FIFO address will "pop" one location from the FIFO. A multi-byte read to the FIFO location will pop the FIFO on the read of the first byte and every third byte read thereafter.

Data is organized in the FIFO as shown in Figure 19. The acceleration data is 2's complement 20-bit data. The two LSBs read on the interface are inserted by the FIFO control logic. Bit 1 is an indicator that an attempt was made to read an empty FIFO, and the data is not valid acceleration data. Bit 0 is a "marker" bit to identify the X-axis, which allows a customer to verify that he is reading FIFO data correctly. An acceleration data point for a given axis occupies one FIFO location.

The read pointer (rd_ptr) points to the oldest stored data that has not already been read from the interface. There are no physical X-, Y-, Z- acceleration data registers. This data also comes directly from the most recent data set in the FIFO, which is pointed to by the Z pointer (z ptr).

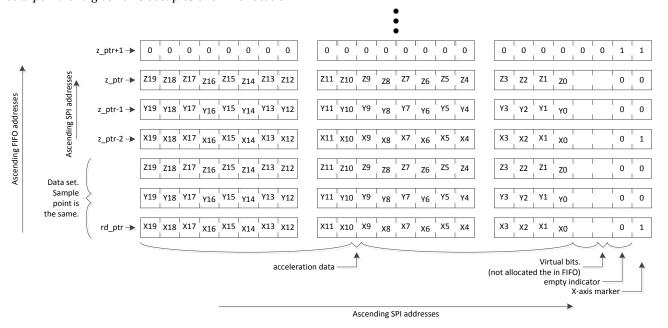


Figure 19. FIFO Data Organization

Low Noise, High g, Low Power, Low Drift 3-Axis Accelerometer

PRELIMINARY

ADXL356/ADXL357

INTERRUPTS

The STATUS register (0x04) contains five individual bits, four of which can be mapped to either the INT1 pin, the INT2 pin, or both. The polarity of the interrupt, active high or active low, is also selectable via the INT_POL bit in the RANGE (0x2C) register. In general the status register clears when it's read, but this is not the case if the condition which caused the interrupt persists after the read of the register. The definition of "persist" varies slightly in each case, but is described in the following sections. The DRDY pin is similar to an interrupt pin but clears very differently. This case is also described.

DATA_RDY

DATA_RDY is set when new acceleration data is available to the interface. It is cleared on read of the status register. It will not be set again until acceleration data that is newer than the status register read is available.

Special logic was added to the clear of the DATA_RDY bit to cover the corner case where new data arrives during the read of the status register. In which case the data ready condition could be missed completely. This logic results in a delay of the clearing of DATA_RDY of up to four 512 kHz cycles.

FIFO FULL

FIFO_FULL is set when the entries in the FIFO is equal to the setting of FIFO_SAMPLES. It will clear:

- 1. If the entries in the FIFO falls below FIFO_SAMPLES. This can only be the case if sufficient data is read from the FIFO.
- 2. On a read of the status register, but only if the entries in the FIFO is less than FIFO_SAMPLES.

FIFO_OVR

FIFO_OVR is set when the FIFO is so far over range that data has been lost. The specified size of the FIFO is 96 locations. There is an additional three location buffer to compensate for delays in the synchronization of the clock domains. It is only when there is an attempt to write past this 99 location limit that FIFO_OVR is set.

FIFO_OVR is cleared by a read of the status register. It is not set again until data is lost subsequent to this data register read.

ACTIVITY

ACTIVITY will be set when the measured acceleration on any axis is above ACT_THRESH for ACT_COUNT consecutive measurements. An over threshold condition can shift from one axis to another on successive measurements and will still be counted toward the consecutive ACT_COUNT.

ACTIVITY is cleared on read of the status register, but will be set again at the end of the next measurement if the ACTIVITY conditions are still satisfied.

NVM BUSY

NVM_BUSY indicates that the NVM controller is busy with either refreshing the shadow registers, programming the fuses, or running BIST and it cannot generate an interrupt.

NVM_BUSY is cleared on a status register read that occurs after the NVM is no longer busy.

DRDY

DRDY is not a status register bit, but is instead a pin that behaves similar to an unmaskable interrupt. DRDY is set when new acceleration data is available to the interface. It is cleared:

- 1. On a read of the FIFO.
- 2. On a read of XDATA, YDATA, or ZDATA.
- 3. By an auto-clear function that occurs approximately halfway between output acceleration data sets.

DRDY is always active high. It is not affected by the INT_POL bit field. In EXT_SYNC modes the first few DRDY pulses after initial synchronization can be lost or corrupted. The length of this potential corruption is less than the group delay.

EXTERNAL SYNC AND INTERPOLATION

The three proposed external SYNC, interpolation options are shown in Figure 6. For clarity, the clock frequencies and delays are drawn to scale.

"Internal ODR" is the output rate of the decimation filter.

Rev PrD

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. See the last page for disclaimers.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.

Tel: 781.329.4700

www.analog.com

Fax: 781.461.3113

"ADC mod. clk. Is the analog modulator clock rate. The (4*64)X ODR example is for a 4000Hz ODR. For other ODR_LPF settings the SYNC frequency approximates the ODR. The relationship to the oscillator clock is modified to: OSC = (4000/ODR)*(4*64)*SYNC. Oscillator clock frequency of 1.024MHz should be used. The oscillator clock must be provided on INT2 pin (Pin 13) and the external SYNC on DRDY pin (Pin 14) as highlighted in Table 8.

Group delay is the digital filter delay from the input to the ADC until data is available at the interface. It is detailed in . This delay is the largest component of the total delay from sensor to serial interface. Figure XX and Figure XX show simulated filter response for the

high pass filter with 10Hz cut-off and low pass filter with $1 \mbox{Hz}$ corner.

DRDY is an optional output pin.

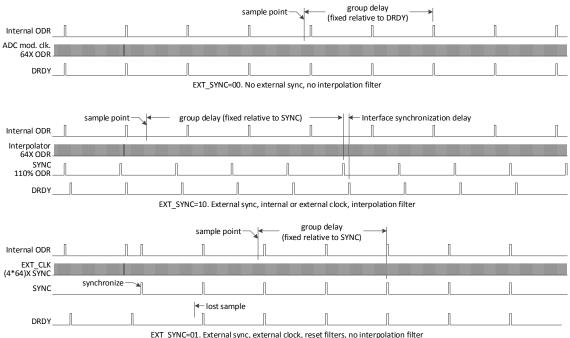

SYNC is an optional input pin.

Table 8. Multiplexing of INT2_XOUT and DRDY_ZOUT

Reg	ister B	it Fields	Pin	s			
	EXT_						
EXT_	SYNC	INT2_EN	INT2	DRDY			
CLK	[1:0]	[3:0]	Pin 13	Pin 14	Comments		
0	00	0000	LO	DRDY			
0	00	not 0000	INT2	DRDY	Internal Cons		
1	00	0000	EXT_CLK	DRDY	nternal Sync		
1	00	not 0000 ²	EXT_CLK	DRDY			
0	01	0000	DRDY	SYNC	These options will reset the digital filters on every SYNC pulse and		
0	011	not 0000	INT2	SYNC	are not recommended.		
1	011	0000	EXT_CLK	SYNC	External Sync, no interpolation filter, data on RDY.		
1	011	not 0000 ²	EXT_CLK	SYNC	Data represents a sample point "group_delay" earlier in time.		
0	10	0000	DRDY	SYNC			
0	10 ¹	not 0000	INT2	SYNC	External Sync, interpolation filter, data on RDY or DRDY. Data		
1	10 ¹	0000	EXT_CLK	SYNC	sampled "group_delay" earlier in time.		
1	10 ¹	not 0000	EXT_CLK	SYNC			

Notes

- 1 No DRDY
- $\,$ 2 No INT2, even though it is enabled.

EXT_SYNC=01. External sync, external clock, reset filters, no interpolation filt:

Figure 12. External Synchronization Options.

EXT_SYNC=oo. No External SYNC or Interpolation.

This option is shown as a baseline. This example is for ODR_LPF=0000, the default 4000Hz output rate option. The group delay is shown in **Error! Reference source not found.**.

EXT_SYNC=10. External SYNC with Interpolation.

In this case the internal decimation filter runs exactly as it does in the baseline case, but the user has access to data points between the normal decimation filter outputs. The time resolution of these intermediate points is 1/64*0DR period. The interface delay shown in Table 10.

Table 10. EXT_SYNC=10 DRDY Delay

_	Delay
ODR_LPF	(osc cycles)
0h	8
1h	10
2h	14
3h	22
4h	38
5h	70
6h	134
7h	262
8h	1031
9h	2054
10h	4102

EXT_SYNC=01. External SYNC with filter synchronization and no interpolation.

With this option the external SYNC is used to synchronize the internal decimation filter such that data is available at the optimum time. There is an initial synchronization of this mode that corrupts the first output data samples that are within one group delay of the EXT_SYNC (from 1-3). If the restrictions below are

ADXL356/ADXL357

respected, this corruption happens only once when the SYNC stream begins.

Special restrictions when using this mode are:

- 1. An external clock (EXT_CLK) must be provided as well as an external SYNC.
- 2. The frequency of EXT_CLK must be exactly 4*64x the frequency of SYNC.
- 3. The width of SYNC must be a minimum of 4 EXT_CLK periods.

4. The phase of SYNC must meet an approximate 25nsec setup time to EXT_CLK rising edge.

Note that if EXT_SYNC mode is used and no SYNC is provided, the device will run on its own synchronization. Similarly, after synchronization the device will continue to run synchronized to the last SYNC pulse it received. This means that EXT_SYNC=01 mode can be used with only a single synchronization pulse.

Low Noise, High g, Low Power, Low Drift 3-Axis Accelerometer

PRELIMINARY

ADXL356/ADXL357

ADXL357 REGISTER MAP

Note: While configuring the ADXL355 in an application, all configuration registers must be programmed before enabling measure mode in POWER_CTL register. When the part is in measure mode, only the following configurations can be changed: (i) HPF_CORNER bits in FILTER register, (ii) INT_MAP register, (iii) ST1 and ST2 fields in SELF_TEST register, (iv) RESET register.

Table 11, ADXL357 Register Map

Table	e 11. ADXL3:) / N	egistei	wap								,	
Reg	Name	Bits	Bit 7	Bit 6	Bit 5	Bit 4		Bit 3	Bit 2	Bit 1	Bit o	Reset	RW
0X00	DEVID_AD	[7:0]					DEVID	_AD				oxAD	R
0X01	DEVID_MST	[7:0]					DEVID_	MST				ox1D	R
0X02	PARTID	[7:0]					PART	'ID				oxED	R
oxo3	REVID	[7:0]					REV	D				0X00	R
0X04	STATUS	[7:0]		RESER\	/ED	NVM	_BUSY	ACTIVITY	FIFO_OVR	FIFO_FULL	DATA_RDY	0X00	R
0X05	FIFO_ENTRIES	[7:0]	RESERVE D				FIF	O_ENTRIES				0x00	R
oxo6	TEMP ₂	[7:0]		RESERVED TEMPERATURE[11:8]						0X00	R		
0X07	TEMP1	[7:0]					TEMPERAT	URE[7:0]				0X00	R
8oxo	XDATA ₃	[7:0]					XDATA[:	19:12]				0X00	R
ox09	XDATA2	[7:0]					XDATA	11:4]				0X00	R
охоА	XDATA1	[7:0]			XDATA[3:0]				RESER\	/ED		0X00	R
oxoB	YDATA ₃	[7:0]					YDATA[:	19:12]				0X00	R
oxoC	YDATA2	[7:0]					YDATA	11:4]				0X00	R
oxoD	YDATA1	[7:0]			YDATA[3:0]				RESER\	/ED		oxoo	R
oxoE	ZDATA ₃	[7:0]		ZDATA[19:12]					0X00	R			
oxoF	ZDATA2	[7:0]		ZDATA[11:4]						0X00	R		
0X10	ZDATA1	[7:0]		ZDATA[3:0] RESERVED					0X00	R			
0X11	FIFO_DATA	[7:0]		FIFO_DATA						0X00	R		
ox1E	OFFSET_X_H	[7:0]					OFFSET_	X[15:8]				0X00	R/W
ox1F	OFFSET_X_L	[7:0]					OFFSET_	_X[7:0]				0X00	R/W
0X20	OFFSET_Y_H	[7:0]					OFFSET_	Y[15:8]				0x00	R/W
0X21	OFFSET_Y_L	[7:0]					OFFSET_	Y[7:0]				0X00	R/W
0X22	OFFSET_Z_H	[7:0]					OFFSET_	Z[15:8]				0X00	R/W
0X23	OFFSET_Z_L	[7:0]					OFFSET_	_Z[7:0]				0X00	R/W
0X24	ACT_EN	[7:0]			RESE	RVED			ACT_Z	ACT_Y	ACT_X	0x00	R/W
0X25	ACT_THRESH_ H	[7:0]					ACT_THRE	SH[15:8]	·			0x00	R/W
0x26	ACT_THRESH_ L	[7:0]					ACT_THRE	SH[7:0]				0x00	R/W
0X27	ACT_COUNT	[7:0]					ACT_CC	UNT				0X01	R/W
0x28	FILTER	[7:0]	RESERVE D		HPF_CORN	NER			ODR_L	.PF		0x00	R/W
0X29	FIFO_SAMPLES	[7:0]	RESERVE D	ESERVE FIFO_SAMPLES					ox6o	R/W			
ох2А	INT_MAP	[7:0]	ACT_EN	OVR_EN2	FULL_EN2	RDY_	EN2	ACT_EN1	OVR_EN1	FULL_EN1	RDY_EN1	0x00	R/W
ox2B	SYNC	[7:0]			RESE	RVED			EXT_CLK	EXT_	SYNC	0X00	R/W
0X2C	RANGE	[7:0]	I ₂ C_HS	INT_POL			RESER	/ED	-	RA	NGE	0x81	R/W
ox2D	POWER_CTL	[7:0]			RESE	RVED			DRDY_OFF	TEMP_OFF	STANDBY	0X01	R/W

ADXL356/ADXL357

Reg	Name	Bits	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit o	Reset	RW
ox2E	SELF_TEST	[7:0]		RESERVED ST ₂ ST ₁					0x00	R/W		
ox ₂ F	RESET	[7:0]				RES	ET				0X00	W

REGISTER DEFINITIONS

This section describes the functions of the ADXL357 registers. The ADXL357 powers up with default register values as shown in the Reset column of Table .

ANALOG DEVICES ID REGISTER

Address: 0x00, Reset: 0xAD, Name: DEVID_AD

This register contains the Analog Devices ID, 0xAD.

Table 12. Bit descriptions for DEVID_AD

Bits	Bit Name	Settings	Description	Reset	Access
[7:0]	DEVID_AD		Analog Devices ID, oxAD	oxAD	R

ANALOG DEVICES MEMS ID REGISTER

Address: 0x01, Reset: 0x1D, Name: DEVID_MST

This register contains the Analog Devices MEMS ID, 0x1D.

Table 13. Bit descriptions for DEVID_MST

Bits	Bit Name	Settings	Description	Reset	Access
[7:0]	DEVID_MST		Analog Devices MEMS ID, 0x1D	0X1D	R

DEVICE ID REGISTER

Address: 0x02, Reset: 0xED, Name: PARTID

This register contains the device ID, 0xED (355 octal).

Table 14. Bit descriptions for PARTID

Bits	Bit Name	Settings	Description	Reset	Access
[7:0	PARTID		Device ID, oxED (355 Octal)	oxED	R

PRODUCT REVISION ID REGISTER

Address: 0x03, Reset: 0x00, Name: REVID

This register contains the product revision ID, beginning with 0x00 and incrementing for each subsequent revision.

Table 5. Bit descriptions for REVID

Bits	Bit Name	Settings	Description	Reset	Access
[7:0]	REVID		Mask revision	охо	R

STATUS REGISTER

Address: 0x04, Reset: 0x00, Name: STATUS

This register includes the following bits that describe various conditions of the ADXL357.

Table 66. Bit descriptions for STATUS

Bits	Bit Name	Settings	Description	Reset	Access
7	Reserved		Reserved.	охо	R
6	Reserved		Reserved.	охо	R
5	Reserved		Reserved.	охо	R
4	NVM_BUSY		NVM is busy with either refresh, programming or BIST.	охо	R

Bits	Bit Name	Settings	Description	Reset	Access
3	ACTIVITY		Activity as defined in the THRESH_ACT and COUNT_ACT registers has been detected.	охо	R
2	FIFO_OVR		FIFO has overrun and the oldest data has been lost.	охо	R
1	FIFO_FULL		FIFO watermark has been reached.	охо	R
0	DATA_RDY		A complete X, Y and Z measurement has been made and results can be read.	охо	R

FIFO ENTRIES REGISTERS

Address: 0x05, Reset: 0x00, Name: FIFO_ENTRIES

These registers indicate the number of valid data samples present in the FIFO buffer. This number ranges from 0 to 96.

Table 17. Bit descriptions for FIFO_ENTRIES

Bits	Bit Name	Settings	Description	Reset	Access
7	Reserved		Reserved	охо	R
[6:0]	FIFO_ENTRIES		Number of data samples stored in the FIFO.	охо	R

TEMPERATURE DATA REGISTERS

Address: 0x06, Reset: 0x00, Name: TEMP2

These two registers contain the uncalibrated temperature data. The nominal intercept is 1852 LSB at 25 °C and the nominal slope is -9.05LSB/°C. TEMP2 contains the 4 most significant bits (MSBs), and TEMP1 contains the 8 least significant bits (LSBs) of the 12-bit value.

Table 18. Bit descriptions for TEMP2

Bits	Bit Name Settings		Description	Reset	Access
[7:4]	RESERVED				
[3:0]	TEMPERATURE[11:8]		Uncalibrated temperature data.	oxo	R

Address: 0x07, Reset: 0x00, Name: TEMP1

Table 79. Bit descriptions for TEMP1

Bits	Bit Name	Settings	Description	Reset	Access
[7:0]	TEMPERATURE[7:0]		Uncalibrated temperature data.	охо	R

X-AXIS DATA REGISTERS

Address: 0x08, Reset: 0x00, Name: XDATA3

These three registers contain the X-axis acceleration data. Data is left-justified and formatted as two's complement.

Table 20. Bit descriptions for XDATA3

Bits	Bit Name	Settings	Description	Reset	Access
[7:0]	XDATA[19:12]		X-axis data.	охо	R

Address: 0x09, Reset: 0x00, Name: XDATA2

Table 21. Bit descriptions for XDATA2

Bits	Bit Name	Settings	Description	Reset	Access
[7:0]	XDATA[11:4]		X-axis data.	oxo	R

Address: 0x0A, Reset: 0x00, Name: XDATA1

Table 22. Bit descriptions for XDATA1

Bits	Bit Name	Settings	Description	Reset	Access
[7:4]	XDATA[3:0]		X-axis data.	охо	R
[3:0]	Reserved		Reserved.	охо	R

Y-AXIS DATA REGISTERS

Address: 0x0B, Reset: 0x00, Name: YDATA3

These three registers contain the Y-axis acceleration data. Data is left-justified and formatted as two's complement.

Table 23. Bit descriptions for YDATA3

Bits	Bit Name	Settings	Description	Reset	Access
[7:0]	YDATA[19:12]		Y-axis data.	охо	R

Address: 0x0C, Reset: 0x00, Name: YDATA2

Table 84. Bit descriptions for YDATA2

Bits	Bit Name	Settings	Description	Reset	Access
[7:0]	YDATA[11:4]		Y-axis data.	охо	R

Address: 0x0D, Reset: 0x00, Name: YDATA1

Table 25. Bit descriptions for YDATA1

Bits	Bit Name	Settings	Description	Reset	Access
[7:4]	YDATA[3:0]		Y-axis data.	охо	R
[3:0]	Reserved		Reserved.	0X0	R

Z-AXIS DATA REGISTERS

Address: 0x0E, Reset: 0x00, Name: ZDATA3

These three registers contain the Z-axis acceleration data. Data is left-justified and formatted as two's complement.

Table 26. Bit descriptions for ZDATA3

Bits		Bit Name	Settings	Description	Reset	Access
[7:0]		ZDATA[19:12]		Z-axis data.	охо	R

Address: 0x0F, Reset: 0x00, Name: ZDATA2

Table 27. Bit descriptions for ZDATA2

Bits	Bit Name	Settings	Description	Reset	Access
[7:0]	ZDATA[11:4]		Z-axis data.	охо	R

Address: 0x10, Reset: 0x00, Name: ZDATA1

Table 28. Bit descriptions for ZDATA1

Bits	Bit Name	Settings	Description	Reset	Access
[7:4]	ZDATA[3:0]		Z-axis data.	охо	R
[3:0]	Reserved		Reserved.	0X0	R

FIFO ACCESS REGISTER

Address: 0x11, Reset: 0x00, Name: FIFO_DATA

Read this register to access data stored in the FIFO.

Table 29. Bit descriptions for FIFO_DATA

Bits	Bit Name	Settings	Description	Reset	Access
[7:0]	FIFO_DATA		FIFO data is formatted to 24 bits, 3 bytes, Most significant byte first. A read to this address "pops" an effective 3 equal byte word of axis data from the FIFO. Two subsequent reads or a multi-byte read completes the transaction of this data onto the interface. Continued reading or a sustained multi-byte read of this field will continue to pop the FIFO every third byte. Multi-byte reads to this address will not increment the address pointer. If this address is read due to an auto-increment from the previous address it will not pop the FIFO instead it will return zeros and increment on to the next address.	охо	R

X-AXIS OFFSET TRIM REGISTERS

Address: 0x1E, Reset: 0x00, Name: OFFSET_X_H

Table 30. Bit descriptions for OFFSET_X_H

Bits	Bit Name	Settings	Description	Reset	Access
[7:0]	OFFSET_X[15:8]		Offset added to X-axis data after all other signal processing. Data is in two's complement format. The significance of OFFSET_X[15:0] matches the significance of XDATA[19:4].	охо	R/W

Address: 0x1F, Reset: 0x00, Name: OFFSET_X_L

Table 31. Bit descriptions for OFFSET_X_L

Bits	Bit Name	Settings	Description	Reset	Access
[7:0]	OFFSET_X[7:0]		Offset added to X-axis data after all other signal processing. Data is in two's complement format. The significance of OFFSET_X[15:0] matches the significance of XDATA[19:4].	охо	R/W

Y-AXIS OFFSET TRIM REGISTERS

Address: 0x20, Reset: 0x00, Name: OFFSET_Y_H

Table 32. Bit descriptions for OFFSET_Y_H

Bits	Bit Name	Settings	Description	Reset	Access
[7:0]	OFFSET_Y[15:8]		Offset added to Y-axis data after all other signal processing. Data is in two's complement format. The significance of OFFSET_Y[15:0] matches the significance of YDATA[19:4].	охо	R/W

Address: 0x21, Reset: 0x00, Name: OFFSET_Y_L

Table 33. Bit descriptions for OFFSET_Y_L

Bits	Bit Name	Settings	Description	Reset	Access
[7:0]	OFFSET_Y[7:0]		Offset added to Y-axis data after all other signal processing. Data is in two's complement format. The significance of OFFSET_Y[15:0] matches the significance of YDATA[19:4].	охо	R/W

Z-AXIS OFFSET TRIM REGISTERS

Address: 0x22, Reset: 0x00, Name: OFFSET_Z_H

Table 34. Bit descriptions for OFFSET_Z_H

Bits	Bit Name	Settings	Description	Reset	Access
[7:0]	OFFSET_Z[15:8]		Offset added to Z-axis data after all other signal processing. Data is in two's complement format. The significance of OFFSET_Z[15:0] matches the significance of ZDATA[19:4].	охо	R/W

Address: 0x23, Reset: 0x00, Name: OFFSET_Z_L

Table 95. Bit descriptions for OFFSET Z L

Bits	Bit Name	Settings	Description	Reset	Access
[7:0]	OFFSET_Z[7:0	0]	Offset added to Z-axis data after all other signal processing. Data is in two's complement format. The significance of OFFSET_Z[15:0] matches the significance of ZDATA[19:4].	охо	R/W

ACTIVITY ENABLE REGISTER

Address: 0x24, Reset: 0x00, Name: ACT_EN

Table 36. Bit descriptions for ACT_EN

Bits	Bit Name	Settings	Description	Reset	Access
[7:3]	RESERVED		Reserved.	охо	R
2	ACT_Z		Z-axis data is a component of the activity detection algorithm.	охо	R/W
1	ACT_Y		Y-axis data is a component of the activity detection algorithm.	охо	R/W
0	ACT_X		X-axis data is a component of the activity detection algorithm.	охо	R/W

ACTIVITY THRESHOLD REGISTERS

Address: 0x25, Reset: 0x00, Name: ACT_THRESH_H

Table 37. Bit descriptions for ACT_THRESH_H

Bits	Bit Name	Settings	Description	Reset	Access
[7:0]	ACT_THRESH[15:8]		Threshold for activity detection. Acceleration magnitude must be above ACT_THRESH to trigger the activity counter. ACT_THRESH is an unsigned magnitude. The significance of ACT_TRESH[15:0] matches the significance of X-,Y-, ZDATA[18:3].	охо	R/W

Address: 0x26, Reset: 0x00, Name: ACT_THRESH_L

Table 38. Bit descriptions for THRESH_ACT_X_L

Bits	Bit Name	Settings	Description	Reset	Access
[7:0]	ACT_THRESH[7:0]		Threshold for activity detection. Acceleration magnitude must be above ACT_THRESH to trigger the activity counter. ACT_THRESH is an unsigned magnitude. The significance of ACT_TRESH[15:0] matches the significance of X-, Y-, ZDATA[18:3].	oxo	R/W

ACTIVITY COUNT REGISTER

Address: 0x27, Reset: 0x00, Name: ACT_COUNT

Table 39. Bit descriptions for ACT_COUNT

Bits	Bit Name	Settings	Description	Reset	Access
[7:0]	ACT_COUNT	-	Number of consecutive events above threshold required to detect	OX1	R/W
			activity		

FILTER SETTINGS REGISTER

Address: 0x28, Reset: 0x00, Name: FILTER

Use this register to specify parameters for the internal high-pass and low-pass filters.

Table 40. Bit descriptions for FILTER

Bits	Bit Name	Settings	Description	Reset	Access
7	RESERVED		Reserved.	охо	R
[6:4]	HPF_CORNER		-3db filter corner for the 1st order high-pass filter relative to the output data rate (ODR).	охо	R/W
		000	No high pass filtering.		
		001	24.700E-4 * ODR		
		010	6.2084E-4 * ODR		
		011	1.5545E-4 * ODR		
		100	o. ₃ 862E-4 * ODR		
		101	o.o954E-4 * ODR		
		110	o.o238E-4 * ODR		
[3:0]	ODR_LPF		Output data rate and low-pass filter corner	охо	R/W
		0000	4000Hz, 1000Hz.		
		0001	2000Hz, 500Hz.		
		0010	1000Hz, 250Hz.		
		0011	500Hz, 125Hz.		
		0100	250Hz, 62.5Hz.		
		0101	125Hz, 31.25Hz.		
		0110	62.5Hz, 15.625Hz.		
		0111	31.25Hz, 7.813Hz.		
		1000	15.625Hz, 3.906Hz.		
		1001	7.813Hz, 1.953Hz.		
		1010	3.906Hz, 0.977Hz.		

FIFO SAMPLES REGISTER

Address: 0x29, Reset: 0x60, Name: FIFO_SAMPLES

Use the FIFO_SAMPLES value to specify the number of samples to store in the FIFO. The default value of this register is 0x60 to avoid triggering the FIFO watermark interrupt.

Table 41. Bit descriptions for FIFO_SAMPLES

Bits	Bit Name	Settings	Description	Reset	Access
7	RESERVED		Reserved.	охо	R

ADXL356/ADXL357

PRELIMINARY

Bits	Bit Name	Settings	Description		Access
[6:0]	FIFO_SAMPLES		Watermark number of samples stored in the FIFO that triggers a FIFO_FULL condition. Values range from 1 to 96.	ox6o	R/W

INTERRUPT PIN FUNCTION MAP REGISTER

Address: 0x2A, Reset: 0x00, Name: INT_MAP

The INT_MAP register configures the interrupt pins. Bits[7:0] select which function(s) generate an interrupt on the INT1 and INT2 pins. If its corresponding bit is set to 1, the function generates an interrupt on the interrupt pins.

Table 42. Bit descriptions for INT_MAP

Bits	Bit Name	Settings	Description	Reset	Access
7	ACT_EN2		ACTIVITY interrupt enable onto INT2		R/W
6	OVR_EN2		FIFO_OVR interrupt enable onto INT2		R/W
5	FULL_EN2		FIFO_FULL interrupt enable onto INT2	охо	R/W
4	RDY_EN2		DATA_RDY interrupt enable onto INT2	охо	R/W
3	ACT_EN1		ACTIVITY interrupt enable onto INT1		R/W
2	OVR_EN1		FIFO_OVR interrupt enable onto INT1		R/W
1	FULL_EN1		FIFO_FULL interrupt enable onto INT1		R/W
0	RDY_EN1		DATA_RDY interrupt enable onto INT1		R/W

DATA SYNCHRONIZATION

Address: 0x2B, Reset: 0x00, Name: SYNC

Use this register to control external timing triggers.

Table 43. Bit descriptions for SYNC

Bits	Bit Name	Settings	Description	Reset	Access
[7:3]	RESERVED		Reserved.	охо	R
2	EXT_CLK		Enable external clock		R/W
[1:0]	EXT_SYNC		Enable external SYNC control.		R/W
		00	Internal SYNC.		
		01	External sync, no interpolation filter. After synchronization, and for EXT_SYNC within spec, DATA_RDY will occur on EXT_SYNC.		
		10	External sync, interpolation filter, next available data indicated by DATA_RDY 14 to 8204 oscillator cycles later (longer delay for higher ODR_LPF setting), Data represents a sample point "group_delay" earlier in time.		
		11	Reserved.		

12C SPEED, INTERRUPT POLARITY AND RANGE REGISTER

Address: 0x2C, Reset: 0x81, Name: RANGE

Table 44. Bit descriptions for RANGE

Bits	Bit Name	Settings	Description	Reset	Access
7	I ₂ C_HS		2C speed. 1 = High Speed mode.		R/W
6	INT_POL		Interrupt polarity.	охо	R/W
		0	INT1 and INT2 are active low.		
		1	INT1 and INT2 are active high.		
[5:2]	Reserved		Reserved.		R

Bits	Bit Name	Settings	Description		Access
[1:0]	RANGE		Range		R/W
		01	±10g		
		10	±20g		
		11	±40g		

POWER CONTROL REGISTER

Address: 0x2D, Reset: 0x01, Name: POWER_CTL

Table 45. Bit descriptions for POWER_CTL

Bits	Bit Name	Settings	Description	Reset	Access
[7:3]	Reserved		Reserved.	охо	R
2	DRDY_OFF		"1" forces the DRDY output to zero in modes where it would normally signal "data ready".	охо	R/W
1	TEMP_OFF		"1" disables temperature processing. Temperature processing is also disabled when STANDBY=1.	охо	R/W
0	STANDBY		1 = standby, o = measure. In standby mode the device is in a low power state. The temperature and acceleration data paths are not operating. Digital functions, including FIFO pointers reset. Changes to the configuration setting of the part should be made when STANDBY = 1. An exception is HPF, which can be changed while to part is operating.	OX1	R/W

SELF-TEST REGISTER

Address: 0x2E, Reset: 0x00, Name: SELF_TEST

Refer to the Self-Test section for information on the operation of the self -test feature.

Table 46. Bit descriptions for SELF_TEST

Bits	Bit Name	Settings	Description	Reset	Access
[7:2]	Reserved		Reserved.	охо	R
1	ST ₂		"1" enables self-test force	охо	R/W
0	ST ₁		"1" enables self-test mode	охо	R/W

RESET REGISTER

Address: 0x2F, Reset: 0x00, Name: RESET

Table 47. Bit descriptions for RESET

Bits	Bit Name	Settings	Description		Access
[7:0]	RESET		Writing code "ox52" resets the device, similar to a Power-On-Reset.	охо	W

RECOMMENDED SOLDERING PROFILE

Figure 20 and 45 provide details about the recommended soldering profile.

Figure 20. Recommended Soldering Profile

Table 48: Recommended Soldering Profile

	Co	ndition
Profile Feature	Sn63/Pb37	Pb-Free
Average Ramp Rate from Liquid Temperature (T_L) to Peak Temperature (T_P)	3°C/sec max	3°C/sec max
Preheat		
Minimum Temperature (T _{SMIN})	100°C	150°C
Maximum Temperature (T _{SMAX})	150°C	200°C
Time from T_{SMIN} to T_{SMAX} (ts)	60 sec to 120 sec	60 sec to 180 sec
T_{SMAX} to T_L Ramp-Up Rate	3°C/sec max	3°C/sec max
Liquid Temperature (T _L)	183°C	217°C
Time Maintained Above $T_L(t_L)$	60 sec to 150 sec	60 sec to 150 sec
Peak Temperature (T _P)	240 + 0/-5°C	260 + 0/-5°C
Time of Actual $T_P - 5$ °C (t_P)	10 sec to 30 sec	20 sec to 40 sec
Ramp-Down Rate	6°C/sec max	6°C/sec max
Time 25°C to Peak Temperature	6 minutes max	8 minutes max

PCB FOOTPRINT PATTERN

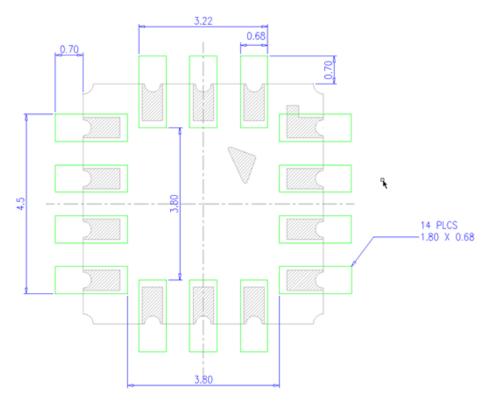


Figure 21. PCB Footprint Pattern and Dimensions (in mm)

OUTLINE DIMENSIONS

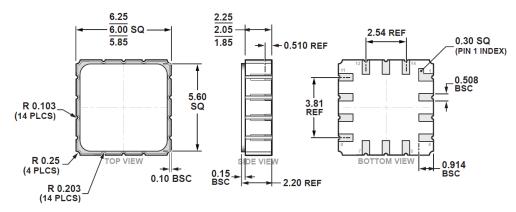


Figure 22: 14-Terminal Ceramic Leadless Chip Carrier (LCC). Dimensions are shown in millimeters.

ORDERING GUIDE

	Output		Specified	_	
Model	Mode	Measurement Range (g)	Voltage (V)	Temperature Range	Package Description
ADXL356BEZ	Analog	±10, ±20	3.0	-40°C to +125°C	Ceramic LCC
ADXL ₃₅ 6BEZ-RL	Analog	±10, ±20	3.0	-40°C to +125°C	Ceramic LCC
ADXL356BEZ-RL7	Analog	±10, ±20	3.0	-40°C to +125°C	Ceramic LCC
ADXL ₃₅ 6CEZ	Analog	±10, ±40	3.0	-40°C to +125°C	Ceramic LCC
ADXL ₃₅ 6CEZ-RL	Analog	±10, ±40	3.0	-40°C to +125°C	Ceramic LCC
ADXL ₃₅ 6CEZ-RL ₇	Analog	±10, ±40	3.0	-40°C to +125°C	Ceramic LCC
ADXL ₃₅₇ BEZ	Digital	±10, ±20, ±40	3.0	-40°C to +125°C	Ceramic LCC
ADXL ₃₅₇ BEZ-RL	Digital	±10, ±20, ±40	3.0	-40°C to +125°C	Ceramic LCC
ADXL ₃₅₇ BEZ-RL ₇	Digital	±10, ±20, ±40	3.0	-40°C to +125°C	Ceramic LCC
5)/A1 AB)// 6B7					- 1 1
EVAL-ADXL ₃₅ 6BZ					Evaluation Board
EVAL-ADXL ₃₅ 6CZ					Evaluation Board
EVAL-ADXL357Z					Evaluation Board
EVAL-ADXL357Z-M					Analog Devices Inertial Sensor
					Evaluation System, Includes
					ADXL357 Satellite
EVAL-ADXL ₃₅₇ Z-S					ADXL357 Satellite, Standalone

Analog Devices offers specific products designated for automotive applications; please consult your local Analog Devices sales representative for details. Standard products sold by Analog Devices are not designed, intended, or approved for use in life support, implantable medical devices, transportation, nuclear, safety, or other equipment where malfunction of the product can reasonably be expected to result in personal injury, death, severe property damage, or severe environmental harm. Buyer uses or sells standard products for use in the above critical applications at Buyer's own risk and Buyer agrees to defend, indemnify, and hold harmless Analog Devices from any and all damages, claims, suits, or expenses resulting from such unintended use.

©2009 Analog Devices, Inc. All rights reserved. Trademarks

and registered trademarks are the property of their respective owners.

ANALOG DEVICES

www.analog.com